亚洲欧洲熟女,在线观看aⅴ无码免费视频,国产精品com,日本四射网色

  • WGZ型帶制動輪齒式聯軸器 WGZ型帶制動輪齒式聯軸器 齒式聯軸器的品種有上百種之多,但基本形式就
  • 金屬聯軸器膜片 金屬聯軸器膜片 泊頭市鑫程機械公司專業生產各種聯軸器彈片,
  • LZJ(原ZLZ)型接中間軸彈性柱 LZJ(原ZLZ)型接中間軸彈性柱 LZ型彈性柱銷齒式聯軸器是采用45#鋼材質,數控銑
  • LMS(原MLS)型雙法蘭梅花形聯 LMS(原MLS)型雙法蘭梅花形聯 我公司專業生產各種梅花聯軸器,45#鋼,鑄鋼,
  • 當前位置:鑫程機械 > 資訊中心 >

    聯軸器剛度對離心機轉速穩定性的影響

    發布日期:2017-07-28 發布者:鑫程聯軸器

    聯軸器剛度對離心機轉速穩定性的影響

    裝備環境工程聯軸器剛度對離心機轉速穩定性的影響陳文潁,宋瓊,洪建忠(中國工程物理研究院總體工程研究所,四川綿陽621900)學仿真軟件為工具,通過建立包含聯軸器扭轉剛度及阻尼特征模塊的離心機轉速伺服控制系統仿真模型,分析聯軸器扭轉剛度對離心機系統轉速穩定度的影響。結果選用扭轉剛度較高的聯軸器有助于提升離心機系統對抗外界擾動扭矩的能力,選用扭轉剛度較低的聯軸器能夠降低系統驅動環節固有擾動扭矩造成的影響。結論對聯軸器扭轉剛度的選擇應根據離心機擾動扭矩的具體組成決定。

      離心機系統結構中,在驅動系統與主體旋轉結構之間需要通過動力傳遞裝置進行連接。除少數采用電機轉子一離心機主軸整體設計的特殊系統之外,常規離心機一般采用聯軸器作為動力傳遞器件。根據聯軸器是否包含彈性組件及扭轉剛度的不同,可分為彈性聯軸器與剛性聯軸器兩類,而不同大小的扭轉外界擾動扭矩;T為驅動系統內部擾動扭矩;/為系統常規離心機的伺服驅動系統一般采用轉速環轉動慣量。

      2聯軸器剛度對離心機轉速穩定性的理論分析,用于對剛度直接影響著系統性能。

      轉速穩定度是多數離心機設備的主要性能指標之一,不同類型的離心機設備對轉速穩定度指標的要求不盡相同,如精密離心機將其作為核心參數,而例行'向其所示的伺服控制結構中引入聯軸器模擬環節,基于達朗伯原理的一個典型聯軸器動力傳遞過程可由如下動力方程進行表述(忽略軸承摩擦阻尼)7-8:量,且/+石;T,r2為驅動系統與被驅動系統的扭矩及阻扭矩,且TL-TrfTl;心,心為聯軸器兩端驅動系統與被驅動系統的轉動角,且心或02(由轉速傳感器的安裝位置決定),C.分別為聯軸器的扭轉剛度與第i階扭轉阻尼系數;s為微分算子。由此可得整合了聯軸器結構的伺服驅動系統控制過程的數學表達式,如式(2)―(5)所示,其中A為系統轉速測量誤差:為阻尼補償電流值為電樞電流指令;iqa為電樞實際電流;!為電樞電壓指令;Ra為電樞電阻;La為電樞分析式(3)―(5)可知,離心機伺服驅動系統一方面將根據測速結果與轉速指令的差值(!-!m)生成調整扭矩抗擾動扭矩;另一方面還會因轉速測量誤差A!m產生伺服驅動系統原理影響系統轉速;此外拖動電機還不可避免地存在固有轉矩脈動,并構成了驅動系統內部擾動扭矩K的主要成分。

      綜上所述,以提升離心機系統轉速穩定度為目標,聯軸器的設計選型顯然期望其既能夠濾除伺服驅動系統自生及內部的擾動扭矩一即選用剛性較低的聯軸器,又能夠有利于調整扭矩的傳遞一即選用剛性較高的聯軸器。因此,離心機系統對聯軸器的設計選型必須綜合聯軸器的扭矩傳導頻響特性、系統擾動扭矩組成與系統實際工況等因素。由此可得,典型離心機系統結構中(聯軸器兩端分別連接拖動電機轉子與系統負載,拖動電機產生的扭矩經電機轉子一聯軸器一系統負載完成力傳遞過程),在忽略外界擾動扭矩71及高階扭轉阻尼的影響后,聯軸器兩端的輸出扭矩T與輸入扭矩7e+的關系表達如式⑷所示:由此聯軸器的扭矩傳導頻響特性可等效為一個二階濾波器,基于典型濾波器參數計算公式可計算出其對應截止頻率F,(單位:Hz)如式(7)所示。聯軸器的扭矩傳導頻響范圍隨其扭轉剛度k的增大逐漸變寬,且成0.5次方正比關系;并受到聯軸器兩端轉動慣量的共同影響,且與之成近似0.5次方反比關系。

      由于離心機系統中聯軸器在面向扭矩傳輸功能時的濾波器特性,可認為聯軸器的設計選型決定了伺服驅動系統的最高調速頻率?。ㄏ到y的動態性能越好,反之系統則具備更好的穩態性能),即決定了離心機系統的動穩態性能一一當調速扭矩頻率大于聯軸器扭矩傳導截止頻率Fr時,其對系統負載的影響將逐漸降低直至歸零。3系統仿真基于上述離心機伺服驅動系統的原理結構與聯軸器動力傳遞過程公式,并結合離心機系統中常用的矢量控制交流同步電機方案,建立如所示的整合了聯軸器結構的離心機伺服驅動系統Matlab/Simulink數學仿真模型,并利用聯軸器扭轉剛度對離心機系統轉速穩定性的影響開展仿真分析。

      該仿真模型在整合了聯軸器結構的基礎上,由轉速環、阻尼補償模塊、電流環、坐標變換模塊、SVPWM模塊、三項逆變器、同步電機組成,并考慮了轉速測量誤差、電流環固有輸出偏差、擾動扭矩等干擾因素對系統輸出轉速的影響,能較為精確地模擬離心機的運轉過程及其中各類非線性因素。

      使用該數學模型進行仿真,分析聯軸器的扭轉剛度對離心機轉速穩定度的影響?;谀硠討B離心機系統為原型設計仿真模型參數:驅動慣量為2.5kg-m2,被驅動慣量為100kg,以2,拖動電機轉矩常數為15N m/A,系統額定輸出扭矩為300N針對擾動扭矩的不同來源構造以下兩類仿真目標以伺服驅動系統的自生及內部擾動扭矩為主的離心機設備,對應外界擾動扭矩7;的絕對值期望為m,系統內部擾動扭矩凡的絕對值期望為45N m(15%電機額定扭矩),轉速測量編碼器轉角測量誤差的絕對值期望為5x10-6rad(雷尼紹300mm圓光柵編碼器);以外界擾動扭矩為主的離心機設備,對應外界擾動扭矩71的絕對值期望為20Nm,系統內部擾動扭矩凡的絕對值期望為4.5Nm(1.5%電機額定扭矩),轉速測量編碼器轉角測量誤差的絕對值期望為3x10-5rad(雷尼紹50mm圓光柵編碼器,。

      基于此將聯軸器扭轉剛度設為1x系數改變伺服驅動系統的調速頻率,使離心機系統的轉速波動量絕對值期望達到最小(單位:rpm)。仿真結果如所示,其顯示了在兩類仿真目標下,隨著聯軸器扭轉剛度的增長,離心機系統轉速波動量的對應變化趨勢。

      依據仿真結果,可以發現在以外界擾動扭矩為主的離心機系統中,系統最小轉速波動量隨著聯軸器扭轉剛度的增大逐漸降低,并最終收斂;同時與系統最小轉速波動量相對應的伺服驅動系統調速頻率隨著聯軸器扭轉剛度的增大逐漸上升,并最終收斂??梢哉J為,選取扭轉剛度較高的聯軸器確實有助于降低該運轉工況下離心機系統的轉速波動量,但由于伺服驅動系統調速頻率的設計需要平衡調整扭矩與系統自a以外界擾動扭矩為主的離心機設備b以伺服驅動系統的自生及內部擾動扭矩為主的離心機設備仿真結果生擾動扭矩,因此系統對于調速頻率的需求存在一個上限值,即對應仿真結果中的收斂點。由此可知,過高的聯軸器扭轉剛度對于系統轉速穩定度并沒有優勢,反而會增加系統的安裝難度。

      在以伺服驅動系統的自生及內部擾動扭矩為主的離心機系統中,系統最小轉速波動量隨著聯軸器扭轉剛度的增大逐漸上升并最終收斂,同時與之對應的伺服驅動系統調速頻率隨著聯軸器扭轉剛度的增大卻基本沒有增加。這是由于在這一運轉工況下,系統以抑制自生擾動扭矩為首要控制目標,因此對于調速頻率的需求較低(在該工況下約為25Hz,遠低于以外界擾動扭矩為主的工況中接近200Hz的需求),從而限制了系統的動態響應能力。故擾動扭矩(以系統內部擾動扭矩為主)將基本不受伺服驅動系統調整扭矩的影響,并直接通過聯軸器作用于系統負載之上,此時扭轉剛度更低的聯軸器所擁有的更小低通濾波截止頻率將有助于消除高頻段擾動扭矩對系統轉速穩定度的影響。

      4結論含聯軸器剛性及阻尼特征模塊的離心機轉速伺服控制系統仿真模型,就聯軸器扭轉剛度對離心機系統轉速穩定度的影響進行了仿真分析?;谠撃P?,能夠為離心機系統中聯軸器的設計選型工作提供必要依據。

      研究表明,聯軸器扭轉剛度對離心機系統轉速穩定度的影響來源于其對離心機系統動穩態調速性能的限制。選用扭轉剛度較高的聯軸器有助于提升離心機系統的動態性能以及對抗外界擾動扭矩的能力,選用扭轉剛度較低的聯軸器能夠提升系統的穩態性能,并降低系統驅動環節固有擾動扭矩所造成的影響。因此在離心機設計過程中,應根據離心機系統的動穩態性能需求、擾動扭矩組成、以及安裝難度等因素選擇扭轉剛度適中的聯軸器作為系統動力傳遞裝置。

      不同離心機系統對動穩態調速性能的需求是不同的,因此針對離心機轉速穩定度的聯軸器設計選型,必須綜合考慮離心機系統結構、系統擾動扭矩組成等因素。在確定離心機系統所要求的調速響應頻率之后,方可基于聯軸器的二階濾波器特征對其技術指標進行設計,使之具備合適的扭矩傳導截止頻率。

     

    主站蜘蛛池模板: 钟山县| 阿瓦提县| 都安| 玉树县| 石泉县| 涿州市| 广安市| 三门峡市| 枣强县| 大邑县| 巴林左旗| 绥阳县| 建平县| 林周县| 洪泽县| 哈尔滨市| 贵德县| 额尔古纳市| 阿克苏市| 麻阳| 桦甸市| 霞浦县| 遂宁市| 南木林县| 巨鹿县| 洛川县| 花垣县| 长顺县| 民勤县| 鄂州市| 江门市| 渑池县| 怀仁县| 惠水县| 芦山县| 成都市| 武冈市| 通山县| 资源县| 茌平县| 佳木斯市|